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Globule transitions of a single homopolymer: A Wang-Landau Monte Carlo study
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The temperature-independent Wang-Landau Monte Carlo approach is implemented for an off-lattice model
of flexible homopolymers and applied to the coil-globule and solidification transitions based on chain sizes up
to N=300. An intermediate transformation from low-density liquid globule to high-density liquid globule is
suggested. A scheme for identifying polymer structures representative of particular temperatures in the course
of the simulation is presented and applied to illustrate intermediate states in the coil-globule transition. Tran-
sition temperatures are calculated and used to obtain a theta point of at least @ =1.96, distinctly higher than the

solid-liquid transition temperature 7,;=1.26.

DOI: 10.1103/PhysRevE.74.041804

I. INTRODUCTION

Monte Carlo techniques have complemented molecular
dynamics (MD) simulations for almost as long as computer
simulations of molecular or physical systems have been per-
formed. The random manner in which new configurations of
a system are generated by Monte Carlo methods leads to two
main advantages over MD simulations. First, the potentially
small correlations between configurations means there is a
greater likelihood that all configurations are sampled, allow-
ing for improved ergodicity of the simulation. Second, and as
a consequence of the first, this freedom to explore outlying
regions of configuration space means that Monte Carlo meth-
ods have the capability of studying behavior across configu-
rations that would require prohibitively long time scales to
reach using MD methods.

To an extent, however, this potential of superior ergodic-
ity is diminished in traditional Monte Carlo methods,
namely, the Metropolis algorithm, by explicitly tying a simu-
lation to a specific temperature. The Metropolis algorithm
accepts or rejects a new configuration in reference to the
Boltzmann factor exp(—E/kT) and may lead to an unwel-
come “trapping” of the system in one configuration, where a
high-energy intermediate configuration required to reach an
alternate low-energy configuration cannot be reached. The
“trapping” problem may not necessarily be significant in
studies within single-phase regions but can become promi-
nent in studies of phase transitions [1].

An alternate Monte Carlo method has recently been for-
mulated by Wang and Landau [2,3]. This method centers on
the computation of the system’s density of states, g(E),
which describes the relative degeneracies of the system’s en-
ergies and is independent of temperature. In this approach,
temperature becomes a secondary quantity used to obtain a
canonical probability distribution of the system’s energies
specific to that temperature: p(E,T)=g(E)e ®*". This prob-
ability function is used to obtain thermodynamic averages:
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(A(T)) = = - (1)
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The Wang-Landau method was originally formulated for
discrete systems, where the ensemble average is a sum over
discrete energies, but is readily generalized [4] to a continu-
ous energy domain where the average is calculated by an
integral over a continuous energy domain, as shown in Eq.
(1). Studies using the Wang-Landau approach in this manner
have started to appear, including studies on the entropy of
Lennard-Jones fluids [4], comparing simple lattice and off-
lattice models of polymers [5], and calculating surface ten-
sions of polymer films using lattice models in a grand-
canonical ensemble [6]. A hybrid version of the density-of-
states approach has been applied to amino-acid sequences
which includes temperature in the acceptance criteria [7,8].
The method was recently applied by Rampf, Paul, and
Binder, studying the coil-globule and solid-liquid transition
temperatures of flexible polymers in the lattice model [9].
Their study concluded that the two temperatures coincided in
the thermodynamic limit, so that the liquid globule phase is
lost in favor of a direct coil-frozen globule transition. In the
off-lattice model described by this paper, we find that the
coil-globule transition temperature retains a value distinct
from the solid-liquid melting point [10], so that the liquid
globule phase is not lost in the thermodynamic limit.

We apply the Wang-Landau approach in order to extract
geometrical information about off-lattice polymer systems.
In order to demonstrate the applicability of the technique, we
report here on its success in reproducing the coil-globule
transition of flexible polymers in a solvent. After calculating
the microcanonical ensemble average m(E) of a range of
geometrical measures calculated for each energy reached by
the system, we calculate the canonical ensemble average
(m)(T) of that measure over a range of temperatures using
Eq. (1). The geometrical measures considered here are the
end-to-end distance, the eigenvalues of the radius of gyration
tensor (which provide an average radius of the polymer
along its three main perpendicular directions), and the radius
of gyration (the sum of the eigenvalues). We compare the
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relative usefulness of these different measures in the analysis
of the coil-globule and solidification transitions. We also use
the measures as the basis on which to identify representative
samples of the polymer at different temperatures.

II. SIMULATION DETAILS

The approach of the Wang-Landau algorithm has been
described elsewhere [2,3]. We summarize its key features
here and then describe the specific adaptations we applied to
make the algorithm suitable for polymer studies.

The temperature-independent density of states in logarith-
mic form, In[g(E)], is dynamically built up as new configu-
rations are rejected or accepted. Initially In[g(E)]=0 for all
E. A new configuration of the system with energy E, is
accepted for replacing the old configuration with energy
E, according to probability p(E,« E;)=exp{ln[g(E,)]
—In[g(E,)]}. The density of states (logarithmic form) is up-
dated for a given configuration with energy E by adding a
value 7y to In[g(E)]. If the new configuration was accepted,
then the function is updated at E,, if it was rejected, then
In[g(E)] is updated again at E;. A histogram is kept of all the
values of E sampled to date. When this histogram is suffi-
ciently flat, the value of the incrementing factor 7 is reduced
by half, with v initially set to 1. The algorithm is repeated
until 7y has been reduced to a sufficiently small value
(y=1079).

A. Adaptations of the Wang-Landau approach
1. Continuous energy range

The Wang-Landau approach was initially formulated for
systems with discrete energies. The generalization to a sys-
tem with a continuous energy domain is relatively straight-
forward [4,8]. The domain is divided into a set of bins
{E;,i=0,...,M} with energy interval dE such that a configu-
ration with energy E is registered in bin i if E,=E<E;,
=E,+dE. A typical value for the number of bins is
M=1000.

In principle the energy domain for a polymer system is
unbounded: infinite energies may be reached due to repulsion
if two monomers approach too close to one another, or by
bond stretching, if the distance between two bonded mono-
mers is stretched beyond the maximum bond length. Such
configurations, where E>E,,,=E,+dE, are simply rejected
and the previous configuration is recounted. The choice of
the maximum energy handled relates to the maximum tem-
perature that the calculation can describe, as discussed fur-
ther in Sec. II G.

The case of the system’s lowest energy is a more subtle
one. Ideally we would like the range of our energy bins to
encompass the system’s global energy minimum, such that
the smallest energy in the range, E, lies at or below the
system’s global minimum E;,. However, we find that due to
the relatively low degeneracy of the global minimum, the
number of samples in the bin corresponding to E;, iS no-
ticeably smaller than the samples generated for other ener-
gies. This situation is in conflict with the basic requirement
of the Wang-Landau approach that flat histograms be gener-
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ated. While in principle the calculation may proceed until
histogram flatness is achieved, in practice the calculation be-
comes prohibitively long (many months), as other energies
are sampled in preference to the E;, bin. We work around
this difficulty by truncating the energy domain, keeping E,
above the global minimum E,;,. The value of E; must be
selected to accommodate the lowest temperature value re-
quired for the study in question. In our studies an energy
range of E e[-4N,0) corresponded to a temperature range
of about T € (0.5,3), sufficient for studying the coil-globule
and solid-liquid transitions. We believe further theoretical
work needs to be done for the Wang-Landau method to ad-
dress this problem of sampling near the global minimum.
Some recent papers [11,12] suggest, for instance, calculating
the density of states in more than one variable.

We note that the Wang-Landau approach allows the cal-
culation to be split into energy windows [3,8,13], so the den-
sity of states calculated within our truncated energy domain
remains valid in its own right. Furthermore in each of the
cases we have calculated it is a very smooth function. We
suggest therefore that where it is impractical to explicitly
perform the calculation down to the global energy minimum,
it is reasonable to extrapolate from the calculated curve using
a fitted function back towards that global minimum. This
strengthens the ability of the Wang-Landau method to de-
scribe values at 7— 0 where the probability of meeting the
global minimum is the greatest.

As mentioned above, the Wang-Landau approach may in
theory be readily split over a number of energy windows,
with the final density of states derived by stitching the sepa-
rate windows together. In practice, we have found one win-
dow, with a suitable choice of minimum energy E,, energy
interval dE, and number of bins M, to be sufficient for our
calculations, after allowing for the problem of counting glo-
bal minimum energy states as discussed in the previous para-
graph.

2. Histogram flatness

Achieving a “sufficiently flat” histogram is a central idea
in the Wang-Landau approach. The definition used by Lan-
dau and colleagues [2,3] for sufficiently flat is that the value
of all nonempty bins in the histogram must be within some
value (80%, say) of the average value of that histogram.
They define [14] the average value as the number of entries
in the given histogram divided by the number of bins.

We make three adaptations of this basic definition of his-
togram flatness. First, we permit the flatness level to be pro-
gressively relaxed as the simulation proceeds. The histogram
is checked for flatness after 1000 Monte Carlo steps (each
Monte Carlo step consists of N individual geometry displace-
ments, where N is the number of monomers in the polymer).
If the check for flatness has been made unsuccessfully
1000/N times, then the flatness criterion is reduced by 5%.
For instance, the histogram for a 100-monomer polymer will
be checked ten times (with 1000 Monte Carlo steps between
each check) before reducing the flatness criteria. We start the
flatness criterion at 85%, and permit it to be reduced to no
less than 50%. When flatness is achieved and a new histo-
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gram is started for a smaller In[g(E)] modification factor, the
flatness criterion is again started at 85%.

Second, we follow Shell et al. [4] in placing a lower
bound on how many times the smallest bin in the histogram
needs to be filled before the histogram may be declared flat.
Shell et al. suggest a minimum value of 20. We have found
this level to be prohibitively low, especially when sampling
dense collapsed globules at lowest energies, and applied a
minimum value of 4000 samples per bin per processor
(i.e., 32 000 samples per bin in a calculation using eight pro-
cessors). The minimum level criterion is not switched on
until the flatness criterion has been reduced to its lowest
permitted level according to the procedure in the previous
paragraph. The justification for this step is that even when
sampling has been relatively uneven so that the main flatness
criterion is not met, we may still nevertheless say that the
full energy range has been sufficiently sampled.

Lastly, perhaps least importantly, we only ignore empty
bins in the low-energy region to the left of the lowest known
nonempty bin. That is, any empty bins in the higher-energy
regions will need to be filled before the histogram may be
declared flat. This step is necessary to prevent the algorithm
from becoming trapped in a previously unoccupied low-
energy bin, where the algorithm will attempt to compensate
by filling this bin to the exclusion of the higher-energy bin.
In this case, were the empty higher-energy bins to be ig-
nored, the histogram might be prematurely declared flat on
the basis of only a small handful of occupied bins. This step
of forcing higher bins to be filled assumes that there are no
forbidden energy bands at higher energies, which is a reason-
able assumption for the classical polymer models studied
here. Only the empty region below the global energy mini-
mum is allowed for.

We comment that the efficiency of the Wang-Landau ap-
proach compared to other expanded ensemble approaches
has been criticized by Aberg et al. [13]. However, they have
used Wang-Landau’s original static definition of histogram.
It would be interesting to learn if, in their experience, the
Wang-Landau approach continues to exhibit inferior perfor-
mance to their adaptive expanded ensemble approach after
implementing the less rigid, dynamic definition of “flatness”
described here.

B. Measures of polymer geometries

We assess the effectiveness of the Wang-Landau approach
at characterizing polymer geometries by using it to calculate
the end-to-end distance R, and the radius of gyration R,.
Calculations are made using the ensemble averages of their
squares (Rf) and (R;), so that R,= \/@, Rg=\/@.

The radius of gyration is calculated via the eigenvalues of
the moment of inertia tensor I,,=(1/N)ZX,(r; ;=1.,)?, a,b

=1,2,3, where r, is the center of mass of the monomers
making up the polymer. If the eigenvalues of this tensor are
N1s Ny, A3, then the radius of gyration is R;:)\l +No+ 5.

A microcanonical ensemble average of the end-end dis-
tance and the inertia tensor eigenvalues is made by averaging
over each of the geometries whose energy fits in energy bin
E. All geometries are counted in this average, regardless of

PHYSICAL REVIEW E 74, 041804 (2006)

whether or not they are counted in the Wang-Landau Monte
Carlo acceptance step through which g(E) is constructed.
This provides a set of geometrical measures of the polymer
as a function of energy: (R2)(E), \{(E), My(E), and \;(E).
The functions of energy are then passed through the density
of states in Eq. (1) to provide the average geometric mea-
sures of the polymer as a function of temperature.

We calculate the Khalatur geometrical parameters [15,16],
which use the inertia tensor eigenvalues to provide a measure
of the shape of the polymer. In the current case of a flexible
polymer, distinguishing between the largely spherical glob-
ule and the rodlike swollen coil is relatively straightforward.
The Khalatur parameters will prove (and have proven
[16,17]) particularly important in studies of semiflexible
since they enable a disk- or toruslike globule to be distin-
guished from a spherical globule.

The Khalatur parameters are K;=(\;+\,)/(A,+\3) and
Ky=(N;+N\3)/(Ny+N3), where N; <A, <<\s3. A perfect sphere
is characterized by K;=K,=1, a perfect rod is characterized
by K;=0,K,=1. A perfect disk would be given by K;=K,
=1/2, but is not typically found among flexible polymers.

Core density is measured as the number of monomers
inside a sphere of radius 2.50 of the monomer closest to the
polymer’s center of mass. Some structural insight is provided
by measuring the average distance of each monomer to its
closest neighbor.

C. O point and melting point

A key parameter for the coil-globule transition is the tem-
perature at which the transition occurs. We compare various
estimates of this temperature: the point at which the geo-
metrical measures change value at the fastest rate (i.e., at
which the derivative d{(m)/dT is maximum, where m is the
particular measure in question), and the corresponding peak
in the heat capacity.

The power of the Wang-Landau approach is evident in
these estimates of the transition temperature. When finding
the maximum derivative, the temperature is treated as a free
variable without the need to perform an additional Monte
Carlo calculation. The density of states needs only to be
calculated once, with the geometric measures m(E) being
collected at the same time alongside it.

We estimate the theta point by fitting the coil-globule
transition temperatures to the functional form with logarith-
mic correction [10],

A

T(N)=0 - =———,
VN(In N)"1

)

where T, is the coil-globule transition temperature at each N
and O is the theta point, the transition temperature of an
infinitely long polymer.

We compare the coil-globule transition temperatures to
the solid-liquid transition, determined as the highest peak in
Cy. The melting point T, is then calculated as the solid-
liquid transition temperature of an infinitely long polymer,
using the function
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B
T(N) =Ty - 5=, (3)
M Q’N

where T, here are the solid-liquid transition temperatures de-
termined from the peaks in the heat capacity.

D. Interaction potentials

Flexible polymers are modeled in this paper using a two-
part energy potential comprised of a bond potential between
neighboring bonded monomers and a two-body interaction
potential between non-neighboring monomers. The solvent is
modeled implicitly through the value of the constants in the
potentials.

For the bond potential we use a standard finitely exten-
sible nonlinear elastic (FENE) model [18]:

UnanaD) == SR {1 =[(=IRTY. (@

Here [ is the bond length, the distance between the two
neighboring monomers. [, is the standard bond length (set to
0.7). K is a spring constant, set to 40, and R=1[,,,—[, with
Lnax=1.

We use a shifted-truncated Lennard-Jones potential for
two-body interactions between all monomers (bonded and
nonbonded):

Uy (D) = U1, 1<,
Utwo body(l) = {0 LJ( ) LJ( L) / : ! (5)
where
Upy(D) = 4e[(a/1)" = (a1D)°]. (6)

Here [ is the distance between the two monomers. We use
e=1. The length parameter o is arranged such that the
Lennard-Jones minimum coincides with the FENE bond
minimum, that is, o=1,/2"%. The cutoff distance I, is set to
2.50 [19].

E. List of neighboring monomers

The majority of two-body interactions between two dis-
tant monomers are effectively zero. We significantly improve
the efficiency of the energy calculation, particularly for long
polymers, by applying a link-cell algorithm in order to not
count these interactions. We do this by dividing three-space
into a grid of cubes of side d. Cubes are identified by an
integer triplet {ijk}, corresponding to the coordinates of the
“bottom left” corner of the cube, in units of d. For instance,
the cube located at the origin and bounded by the positive x,
v, and z axes has grid index {000}. The cube located one unit
above it, moving along the z axis, is {001}.

We keep a record only of occupied cubes within the grid.
Each record, identified by the grid index, contains a refer-
ence to the monomers contained within it.

Two-body interactions between monomers are only
counted for monomers in neighboring cubes. That is, for a
given cube, only the 27 cubes surrounding it (including it-
self) are considered. To avoid double counting we apply an
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ordering to the grid index triplets, such that x-indices are
considered smaller than y indices which are smaller than z
indices. Under this ordering we have, for instance, 000
<100<010<110<001<011<101<111. When we con-
sider two-body interactions between monomers inside two
cubes {ijk} and {lImn}, the interactions are only calculated if
{ijk}={Imn} and if |i-I| <1, |j—-m| =1, and [k—-n| <1 (the
condition for the cubes being neighbors).

We align the size of the cubes with the Lennard-Jones
cutoff distance [see Eq. (5)], taking d=1,=2.50. This ensures
that calculated energies are consistent, so that interactions
are not neglected and cut off prematurely.

Applying this grid algorithm we reduce the complexity of
the energy calculation considerably down from O(N?).

F. Generation of configurations

We take a twofold approach to generating new configura-
tions. For the first N—1 moves (where N is the number of
monomers) we perform a local displacement. One monomer
is chosen at random and shifted in a random direction by a
distance between 0.3 and 0.7 of the standard bond length as
used in the bond potential, Eq. (4) (2 length units here).

Then a large-scale pivot move is used for the Nth move. A
monomer i is chosen at random, where i e {1,...,N—1}. The
entire segment following it (monomers i+1,...,N) is rotated
through a randomly selected angle. If the new configuration
thus generated is rejected, a new pivot move is used starting
from the old configuration. The algorithm returns to the local
displacements only after a pivot move has been accepted.

In both types of moves, the random direction of the local
displacements and the random angle of the pivot move are
generated in such a way as to ensure a uniform distribution
of the directions over the entire unit sphere. That is, we en-
sure the directions are not biased along the x, y, or z axes
[20].

The rationale behind this two-prong approach is to facili-
tate a steady sampling of configuration space via the local
displacements, while ensuring ergodicity, preventing the sys-
tem from getting trapped in one portion of configuration
space, via the pivot moves.

G. Applicable temperature range

In principle the Wang-Landau method is able to describe
the limiting temperature behavior as 7— 0 if the energy do-
main of the density of states includes the global minimum
E .- However, as discussed above in Sec. II A1, the
global minimum is in practice difficult to describe accurately.
Since we are primarily interested in the solid-liquid and coil-
globule transitions, we restrict our energy range to
E/N e[-4,0).

The temperature range over which we may be confident
that the system has been accurately determined is character-
ized by the probability function p(E,T)=g(E)e T, At finite
T this function typically forms a single-peaked distribution
with the peak centered around some energy E,(T) and
p(E, T)—0 as E—E,;, or E—x. At the temperature of a
first-order transition the distribution would be double
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peaked, but the following argument still applies using the
larger of the two peaks (if they are the same size then it does
not matter which peak is used). In practice we expect any
transition temperature to be safely located in the middle of
the temperature range, so at the bounding temperatures de-
scribed here the probability distribution will be single
peaked.

The minimum and maximum temperatures are the limits
at which p(E,T) forms a complete, peaked curve, such that
the values of p(E,T) at low E (at the global minimum) and at
high E (at E,,. the highest point for which data are col-
lected) are significantly smaller than the value at the peak.
We quantify this by requiring the peak to be 1000 times
higher than the end points: p(E,,T)/p(Eny,,T) <1000,
P(E,, T)/ p(Enax, T) < 1000.

As the temperature is increased, the low-E criterion is
easily met, but at a certain temperature we find that the high-
E criterion is no longer met. The probability function be-
comes truncated at E,,, rather than reaching O.

Note that as T— 0, p(E,T) becomes a & function centered
on the global minimum: p(E,T=0)=&E—-E,,;,). It can be
sufficient to numerically model this limit with a function
forming a maximum at E=FE ;,, and therefore we could ar-
gue for relaxing the criteria that p(E,,T)/p(E y,,T) <1000
as T— 0. Since we are interested in the behavior at finite 7" in
the region near the transition temperature, corresponding to
our energy range E/N €[-4,0), we will use the same criteria
given in the previous paragraph at high and low E for testing
the valid temperature range of the calculated density of
states. This is reasonable since we will see the system has
effectively reached its low-temperature limiting values at a
finite 7 midway between O and the transition temperature.

H. Implementation details

The Wang-Landau algorithm was implemented in C++,
whose object-oriented nature facilitates the easy adaptation
of the same code to different systems (such as block copoly-
mers or even nonpolymeric systems). Random numbers, ma-
trix eigenvalues, and curve minimization and root finding
were obtained with the assistance of the GNU Scientific
Library (GSL).

A multiple processor implementation of the algorithm was
performed with Message Passing Interface (MPI) library for
parallelization, applying the following master-slave architec-
ture. A copy of the current density of states is sent to each
slave processor, which independently generates new polymer
configurations and applies the Monte Carlo acceptance step,
building up the local copy of the density of states. Each
processor operates independently for 250 Monte Carlo steps
(250N new configurations) before sending the difference be-
tween its current density of states and the value it started
with in this iteration to the master processor. The master
collates each processor’s difference and tests if the histogram
of sampled states passes the flatness criteria. If convergence
is not yet achieved the master sends the new combined value
of the density of states to the slaves, starting the next itera-
tion.

Calculations were performed on eight nodes of the APAC
SGI Altix cluster situated at the Australian National Univer-

PHYSICAL REVIEW E 74, 041804 (2006)

2000

1800

1600

In[g(B)]

1400 -+ —

1200~ - -

L 1 L ] . | L
1000-4 -3 -2 -1 0

FIG. 1. (Color online) Density of states as a function of energy.
The density of states is in logarithmic representation In[g(E)] and
energy is scaled against polymer size N for comparison. Sample
curves are given for N=100, 200, and 300 only. The curves here
have been shifted to a common E=0 value of 2000.

sity. The implementation was validated using a two-particle
Lennard-Jones system, producing a density of states identical
to the exact analytical result [4].

III. RESULTS FOR THE COIL-GLOBULE TRANSITION

Calculations were performed over a range of N from N
=50 through to 300. One thousand energy bins were used
over the range E € [-4N,0). The average number of samples
in total was of the order of 10°, or 10° per energy bin. The
Monte Carlo acceptance ratio averaged around 0.2. A num-
ber of calculations were performed at each N using different
initial geometries in order to reduce random errors in deter-
mining transition temperatures due to the starting configura-
tion. The density of states calculated for these flexible ho-
mopolymers were smooth and monotonic (see Fig. 1). The
density of states are defined up to a multiplicative constant
(an additive constant in logarithmic representation); the
curves in Fig. 1 have been shifted for the purposes of the
diagram so that the £E=0 value of each curve reaches 1000.
We comment that these density of state curves are monotonic
increasing, in contrast to those calculated by Rampf, Paul,
and Binder for lattice polymer, which exhibit a maximum
value in In[g(E)] at a certain value of E, beyond which the
curve decreases. We interpret the difference as being an ar-
tifact of the lattice approach used by Rampf et al., where
bond lengths (and therefore bond energies) between neigh-
boring monomers can only be one of a handful of fixed val-
ues, whereas our bond lengths vary smoothly over a range of
values between nearly 0 and several average bond lengths,
depending on the action of the local displacement moves.
Bond stretching in particular leads to high-energy samples.
Our Lennard-Jones potential between non-neighboring
monomers, which is not used in Rampf er al.’s model, also
gives rise to high-energy states when monomers come in
close to one another. Hence we would expect a greater num-
ber of higher-energy states in our model, accounting for the
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FIG. 2. (Color online) Average energy U(T)=(E), scaled against
N for N=100, 200, 300.

difference between ours and Rampf et al.’s density of states.
The off-lattice model seems to us to be significantly more
realistic than the lattice model in this respect.

The average internal energy U(T)=(E) is calculated di-
rectly from the density of states and is presented in Fig. 2 for
selected N. Its derivative Cy,=dU/dT, shown in Fig. 3 by the
solid line for N=300, is the heat capacity of the system at
constant volume. We notice three regions in the heat capac-
ity: we interpret the first, a peak at low temperature, to be the
solid-liquid transition. The higher-temperature peak in region
IIT corresponds to the coil-globule transition. We argue that
the middle region corresponds to a transformation within the
liquid globule. The transition temperatures of the two peaks
at regions I and III for each N are displayed in Fig. 10 below.

We notice that a certain amount of noise remains in the
heat capacity. Recalling that the original density of states
In[g(E)] follows a shallow curve over the range E/N
€ [-4,0), we are able to smooth the data by fitting it to a

T T T T T T T T T T T

800 i N
- — from raw In[g(E)]
from smoothed In[g(E)]

1I

FIG. 3. Heat capacity Cy=dU/dT for N=300. The solid curve
corresponds to the raw density of states; the dotted curve is derived
from the density of states fitted to a tenth-order polynomial. Stable
phases are marked as regions A, B, C, and D; transition peaks
between them are marked as peaks I, II, and III
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FIG. 4. (Color online) Probability curves p(E,T)=g(E)e #/*T,
normalized to a total probability of 1. These curves correspond to
N=150. Temperature points represent regions A, B, C, and D and
transition peaks I, II, and IIL

tenth-order polynomial. Since In[g(E)] flattens off somewhat
across energies higher than zero, this polynomial fitting
would not be successful over a larger range, but it appears to
be successful over the energy range we have used. The heat
capacity calculated from the fitted density of states is shown
by the dotted curve in Fig. 3. We see how the excess noise
has been eliminated and the two peaks in regions I and III are
made more distinct. Region II is reduced by this process to a
single peak. An eighth-order or lower fit does not preserve all
three peaks, at orders higher than 12 the noise from the raw
curve starts to appear. However in order to not introduce
biases due to this smoothing step we use the raw unsmoothed
density of states in the following analyses.

The probability functions p(E,T)=g(E)e *T for sample
values of temperature T are shown in Fig. 4, scaled to a total
probability of 1. The curves are shown for N=300; other
polymer sizes gave similar probability functions. For conve-
nience the probability functions have been calculated at tem-
peratures representing the four phase regions A, B, C, and D
and the transitions between them, the peaks in regions I, II,

— N=100
----- N=200
025 -=- N=300 %)

FIG. 5. (Color online) Microcanonical ensemble averages of the
radius of gyration squared, shown for N=100, 200, 300.
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TABLE 1. Temperature bounds indicating the range of validity of the densities of states, calculated over

the energy range E/N € [-4,0).

N 50 75 100 125 150 175 200 225 250 300
Lower T 0.28 0.41 0.45 0.46 0.5 0.54 0.56 0.59 0.6 0.63
Upper T 1.89 2.14 2.35 2.51 2.62 2.71 2.8 2.88 2.94 3.03

and III. The figure illustrates the probability curve transform-
ing into a & function as 7— 0, and the truncated probability
curve at both high and low 7. The temperature bounds for
each N between which the probability curves are considered
untruncated (see Sec. Il G) are presented in Table 1. The
probability functions at the transition temperatures show
only one peak, consistent with higher-order rather than first-
order transitions.

Polymer properties calculated include the end-end dis-
tance and the eigenvalues \|, \,, N5 of the moment of inertia
tensor. We collate these eigenvalues into the radius of gyra-
tion, R;:)\1+)\2+)\3. The values are collected as microca-
nonical averages at each value of energy E, and transformed
into functions of temperature using Eq. (1). The microca-
nonical averages for the radius of gyration squared are plot-
ted in Fig. 5, and their transformed values as a function of
temperature are shown in Fig. 6. The curves for the end-end
distance are similar. The coil-globule transition temperature
is well defined in these curves, with the transition approach-
ing first-order, where the derivative with respect to T be-
comes vertical, as the length of the polymer increases. In the
Wang-Landau approach the temperature becomes a free vari-
able, and we are therefore able to calculate derivatives to an
effectively arbitrary precision. The derivative for the radius
of gyration squared at N=175 is also shown in Fig. 6. The
coil-globule transition temperature is identified as the point
where the derivative is maximal and is presented in Fig. 10
below, calculated from a range of measures along with the
heat capacity transition peaks. We notice that the transition
temperature from the end-end distance and from the radius of
gyration are essentially equal. We cite comments made by
Ivanov, Paul, and Binder [17] with regard to the imprecision

30 . . . . —— 30

25—

20—

FIG. 6. Radius of gyration squared Rﬁ(T) as a function of tem-
perature, shown for N=175. The solid line is R;(T), the dotted line
is its derivative. Peaks in the derivative corresponding to transitions
I, II, and III have been marked.

of the traditional Metropolis Monte Carlo approach in deter-
mining the transition temperature, where an estimate must be
made from fluctuations ((Rg)—(R;}z)/ (R;)2 using a finite
number of temperature points. In contrast the ease of the
Wang-Landau approach in identifying the transition tempera-
ture is remarkable. The radius of gyration or end-end dis-
tance predominantly identifies the coil-globule transition,
corresponding to peak III in the heat capacity, but peaks I
and II can also be located (see Fig. 6), indicating that a slight
compactification of the globule, reducing its size by a small
amount, occurs at these solid-liquid and liquid-liquid transi-
tions.

The coil-globule transition temperature determined from
the Khalatur parameter K;=(\;+X\,)/(N,+\3) is also shown
in Fig. 10. Interestingly, the K transition temperature is very
close to the estimate of the coil-globule transition tempera-
ture provided by peak III from the heat capacity, while the
transition temperatures from the radius of gyration and end-
end distance are slightly higher. We would expect peak III to
be the best estimate of the transition since it is directly re-
lated to the energy of the system. This suggests that K; pro-
vides a superior measure of the coil-globule transition than
the radius of gyration. The ® points calculated from these
alternate measures of the coil-globule transition are pre-
sented in Sec. III B.

A sample plot for N=175 of the core density and its de-
rivative is shown in Fig. 7. The three transition peaks are
clearly evident, indicating a progressive compactification of
the globule. The average distance from each monomer to its

60 T T T 0
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=
T
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W
S
T

-30

core density (monomers per core sphere)
w
(=
T

>
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FIG. 7. Core density as a function of temperature, shown for
N=175. The solid line is the core density, defined as the number of
monomers in a sphere of radius 2.5¢ from the monomer closest to
the center of mass. The dotted line is its derivative with respect to
temperature. Peaks in the derivative corresponding to transitions I,
II, and III have been marked.
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i
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=3
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FIG. 8. Average distance from each monomer to its nearest
neighbor, as a function of temperature. Shown for N=175. The
solid line is the average density; the dotted line is its derivative with
respect to temperature. Peaks in the derivative corresponding to
transitions I, II, and III have been marked.

nearest neighbor is given in Fig. 8, also for N=175. In this
figure the coil-globule transition is strong, with the other two
transitions being less prominent but still visible as shoulders
in the derivative.

A. Identifying representative samples

We use the Wang-Landau approach and the microcanoni-
cal ensemble averages to identify representative samples at
temperature points of interest, filtering them from the thou-
sands of samples taken at each energy. Our approach is to
assume an approximate correspondence between the canoni-
cal ensemble averages as a function of 7" and the microca-
nonical ensemble averages at an energy equal to the canoni-
cal ensemble average energy at the given temperature, E
=U(T). Samples within or near to this microcanonical energy
bin whose individual properties (radius of gyration, etc.)
match the microcanonical ensemble average at that energy
[E=U(T)] are considered representative of that ensemble,
and hence of the temperature originally used.

This procedure for identifying representative samples
strictly works best when there is approximately a one-one
correspondence between temperature, internal energy and
geometry. This is reasonable in the case of flexible ho-
mopolymers but in other circumstances, for instance the
semiflexible case including chain stiffness, there may be
competing structures such as discs or torii contributing
equally to a given energy state. In this more complex situa-
tion we anticipate the use of histograms [16] describing the
distributions of polymer properties within each microcanoni-
cal ensemble will become indispensable. Similarly at first-
order transition temperatures there may be two equally domi-
nant contributing energies [two peaks in the probability
curve p(E,T)] and samples at both energies would need to be
considered.

We implement this idea by calculating the density of
states and simultaneously collecting samples on file, up to
10 000 per energy bin. The average value of a range of mea-
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FIG. 9. Representative structures for N=300. Structure (a) rep-
resents a low-temperature frozen globule (region A, T=0.6), struc-
ture (b) represents the high-density liquid globule (region B, T
=1.05), structure (c) represents a low-density liquid globule (region
C, T=1.61), and structure (d) represents a high-temperature swollen
coil (region D, T=2.5).

sures at a given temperature is then calculated, including
core density, average distance to closest neighbor, radius of
gyration squared, end-end distance squared, and K. The sum
of the square of the differences between these average values
and their value for a particular sample is calculated. The
samples with the smallest sum of square differences are ac-
cepted as representative samples.

We apply this procedure to identify representative
samples for each of the four phases, regions A, B, C, and
D, taking N=300 as an example. A representative state
corresponding to the frozen globule, region A (7=0.7,
E=-1130.5) is shown in Fig. 9(a) (its radius of gyration
squared is 5.04 units and core density is 56.0 monomers,
close to the microcanonical ensemble average of 4.98 and
55.9, respectively). Representatives of liquid globules from
regions B (T=1.05,E=—871.5,<R§)=6.30,(p)=48.2) and C
(T=1.61,E=—513.6(R§)=10.30,(p)=33.0) are given in Fig.
9(b) (R;=6.34,p=48.0) and Fig. 9(c) (R;=10.70,p=33.0),
respectively. The qualitative difference between the two lig-
uid globules is readily seen, with the high-density region B
sample appearing more compact than the more diffuse low-
density region C sample. Finally, Fig. 9(f) (R§=43.71, p
=10.0) shows a high-temperature  swollen coil
(T=2.5,E=-1743 (R;)=43.19.(p)=13.2).

B. O point and melting point: Calculated values

We obtain a number of alternative estimates of the theta
point ® by fitting coil-globule transition temperatures to 7.
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FIG. 10. (Color online) Scaling of transition temperatures and
determination of ® point and melting point. The points in the top
four are the coil-globule transition temperatures for each N calcu-
lated using the radius of gyration, end-end distance, K| parameter,
and heat capacity peak III, each shown with a curve of best fit to
T,=0-A/[VN(In N)”"11] (see Table II). The lowest curve shows the
solid-liquid transition temperatures (peak I) for each N, fitted to
T,=Ty—B/N"3 with T);=1.263 and B=2.91. The transition curves

are plotted against 1/ VN to illustrate the extrapolated behavior at
large N.

=0-A/[VN(In N)""'] [Eq. (2)]. We take the transition tem-
peratures from a range of sources, namely, the radius of gy-
ration R;, the end-end distance R?, peak III in the heat ca-
pacity, and the Khalatur parameter K. The fits are shown in
Fig. 10 and the ©® point estimated given in Table II. Error
bars in ® were estimated from the error matrix generated
during the x> minimization used to perform the fit [21], with
estimates of the standard deviation in each temperature point
T.(N) derived from the scatter of the repeated simulations at
each N.

As mentioned above the transitions from the radius of
gyration and end-end distance essentially coincide but are
situated at a slightly higher temperature than the K| and Cy,
peak III transitions. The Rﬁ and R? estimates are based on the
temperature at which their derivatives are the greatest, at
which the expanded coil is collapsing most rapidly to a glob-
ule. We assume that the C, estimate is the truest estimate of
the theta point since it is directly related to the energy of the
system. It follows then that the “ideal coil” configuration
belonging to the ® point is located at slightly lower tempera-
ture from the temperature at which the expanded coil col-
lapses most rapidly.

TABLE II. Alternate estimates of the ® point, calculated by
fitting coil-globule transition temperatures (see Fig. 10) to T,=0
—A/[VN(In N)"'1].

Source Q] A

Cy peak III 2.064%0.052 16.3
R§ 2.296+0.017 12.7
R 2.305+0.019 12.7
K, 2.158+0.034 13.9
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FIG. 11. (Color online) Radial distribution function g(r) cen-
tered on monomer closest to center of mass, for N=300 in regions
A, B, C, and D (T=0.7, 1.05, 1.61, and 2.5, respectively).

The solid-liquid transition temperatures measured from
the first peak (peak I) in C, are fitted to T,=T,—B/N~'?3
[Eq. (3)] and shown in the lower curve in Fig. 10. The fitting
calculation yields a melting point of T),=1.263+0.045 (with
B=2091). Our estimates of the ® point are significantly
higher than the solid-liquid transition temperature, with a
ratio ®/T),=1.6 or higher, in contrast to Rampf’s model,
where the two temperatures coincided (®/T),=1). Rampf et
al. concluded that the coil-globule transition may not be seen
in real large-chain polymers, being preempted by the liquid-
solid transition. Our results, reported briefly in [10], demon-
strate that their conclusion does not generally apply to all
flexible homopolymers.

C. Transformation within the liquid globule

If we have correctly identified the heat capacity peak I as
the solid-liquid transition and peak III as the coil-globule
transition, then it follows that region II must be a liquid-
liquid transition inside the globule [10]. The lower-
temperature region B corresponds to a high-density liquid
globule; the higher-temperature region C is a low-density
liquid globule.

The radial distribution functions for the two liquid regions
for N=300 are shown in Fig. 11 and compared to examples
from region A (solid) and region D (expanded coil). The
radial distribution functions g(r) [not to be confused with the
density of states g(E)] were calculated relative to the mono-
mer closest to the polymer’s center of mass. The radial dis-
tribution function was first calculated as a microcanonical
ensemble average g(r|E) over 10 000 samples for each en-
ergy bin E and then converted to g(r|T) at a given tempera-
ture by applying Eq. (1) to the values at each point r. The
temperatures used were 7=0.7, 1.05, 1.61, and 2.5 for re-
gions A, B, C, and D respectively.

The region D radial distribution function has a strong
peak at r=0.7 corresponding to bonded neighbors, followed
by a relatively smooth slowly decaying form describing the
gaslike behavior of a swollen coil, where the probability of
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finding a monomer is evenly distributed along the entire
reach of the polymer away from its central monomer. Re-
gions B and C have an undulating distribution which we
identify with the liquid-droplet structure of a condensed
globule. The troughs and peaks in the distribution function
for region B are more pronounced than for region C, indicat-
ing that the high-density liquid globule in region B is more
structured than the low-density liquid globule in region C.
The distribution function for region A is similar to that of
region B, with slightly deeper troughs, suggesting that the
solid globule in region A has been measured in a glasslike
state.

IV. CONCLUSIONS

The Wang-Landau Monte Carlo method has been applied
to the study of the coil-globule transition of flexible ho-
mopolymers using an off-lattice geometry and is particularly
facile in determining a precise value for the transition tem-
perature.

We consider the approach useful in identifying structures
of particular interest (representative structures below, above,
and at the transition point), by enabling geometric criteria to
be calculated which match against representative structures.

The approach provides a broad temperature range easily
encompassing transition temperatures. The valid temperature

PHYSICAL REVIEW E 74, 041804 (2006)

range may be readily defined to a required degree of accu-
racy through analysis of the probability function p(E,T)
=g(E)e /", Care would need to be taken in order to apply
the Wang-Landau method to the study of global minima (or
equivalently, the limit 7— 0). Further algorithmic develop-
ment [11,12] in this regard will no doubt prove useful.

We have suggested a means of improving the speed of the
algorithm, by declaring the histogram flat when each energy
bin has received a sufficient number of samples. This leads
to a significant increase in computation speed can be ob-
tained compared to the original flatness criteria used by
Wang and Landau [2,3].

For the Hamiltonian used in this paper (FENE bond po-
tential plus truncated Lennard-Jones two-body potential be-
tween monomers), the coil-globule transition led to a ® point
significantly higher than the solid-liquid transition tempera-
ture (melting point) with ®/T),=1.6 or higher. This contrasts
with the Rampf-Paul-Binder model where these two tem-
peratures (calculated in the limit of an infinitely long chain)
are the same. We conclude that the liquid-droplet form of the
collapsed globule can usually be observed before the frozen
globule is obtained.

We also identify an intermediate liquid-liquid transition
between the coil-globule and solid-liquid transitions. The
lower-temperature high-density liquid globule is more struc-
tured than the higher-temperature low-density liquid globule.
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